Adaptive Online Sequential ELM for Concept Drift Tackling
نویسندگان
چکیده
A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect "underfitting" condition.
منابع مشابه
Adaptive Convolutional ELM For Concept Drift Handling in Online Stream Data
In big data era, the data continuously generated and its distribution may keep changes overtime. These challenges in online stream of data are known as concept drift. In this paper, we proposed the Adaptive Convolutional ELM method (ACNNELM) as enhancement of Convolutional Neural Network (CNN) with a hybrid Extreme Learning Machine (ELM) model plus adaptive capability. This method is aimed for ...
متن کاملEnsemble of subset online sequential extreme learning machine for class imbalance and concept drift
In this paper, a computationally efficient framework, referred to as ensemble of subset online sequential extreme learning machine (ESOS-ELM), is proposed for class imbalance learning from a concept-drifting data stream. The proposed framework comprises a main ensemble representing short-term memory, an information storage module representing long-term memory and a change detection mechanism to...
متن کاملTime Series Prediction Based on Adaptive Weight Online Sequential Extreme Learning Machine
A novel adaptive weight online sequential extreme learning machine (AWOS-ELM) is proposed for predicting time series problems based on an online sequential extreme learning machine (OS-ELM) in this paper. In real-world online applications, the sequentially coming data chunk usually possesses varying confidence coefficients, and the data chunk with a low confidence coefficient tends to mislead t...
متن کاملROS-ELM: A Robust Online Sequential Extreme Learning Machine for Big Data Analytics
In this paper, a robust online sequential extreme learning machine (ROS-ELM) is proposed. It is based on the original OS-ELM with an adaptive selective ensemble framework. Two novel insights are proposed in this paper. First, a novel selective ensemble algorithm referred to as particle swarm opt imization selective ensemble (PSOSEN) is proposed. Noting that PSOSEN is a general selective ensembl...
متن کاملTowards Online Concept Drift Detection with Feature Selection for Data Stream Classification
Data Streams are unbounded, sequential data instances that are generated very rapidly. The storage, querying and mining of such rapid flows of data is computationally very challenging. Data Stream Mining (DSM) is concerned with the mining of such data streams in real-time using techniques that require only one pass through the data. DSM techniques need to be adaptive to reflect changes of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016